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Abstract

Background: Although there is a range of different symptoms across neurodegenerative diseases, they have been
noted to have common pathogenic features. An archetypal feature shared between these diseases is protein
misfolding; however, the mechanism behind the proteins abnormalities is still under investigation. There is an
emerging hypothesis in the literature that the mechanisms that lead to protein misfolding may be shared across
neurodegenerative processes, suggesting a common underlying pathology.

Main body: This review discusses the literature to date of the shared features of protein misfolding, failures in
proteostasis, and potential propagation pathways across the main neurodegenerative disorders.

Conclusion: The current data suggests, despite overarching processes being shared, that the molecular events
implicated in protein pathology are distinct across common neurodegenerative disorders.
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Background
Numerous neurodegenerative diseases (ND) share
remarkably common pathogenic features in spite of the
diversity of clinical symptoms [6, 7]. For many, their
pathogenesis is linked by: the misfolding of proteins that
aggregate within specific brain regions; significant neu-
roinflammation and increased oxidative stress of those
areas; with final degeneration of neural tissue [7, 48].
However, the molecular mechanisms responsible for the
process of this conformational change from proportion-
ate, healthy, functional proteins to pathological, accumu-
lated structures is not yet fully understood [7, 48]. There
is new discussion in the literature that the mechanisms
behind these pathogenic features of common NDs may
be similar, linking these disease processes in a way that
was previously thought distinct. This review will focus
on the current evidence for the similarities between
mechanisms of (1) protein folding and quality control;
and (2) protein propagation, specifically with respect to
the validity of a shared prion-like propagation hypothesis.
In discussion, the inclusion of proteins will be largely
limited to those only for which there is the clearest
evidence base [49].

Protein folding and quality control
In order for the approximately 15,000 proteins present in
the neural proteome to fulfil their biological function, they
often require folding consistent with exact instructions
encoded in the amino-acid sequence [23, 44]. However, the
number of potential conformations of even a small poly-
peptide (around 100 amino acids) is vast, around 1 × 1018

conformations [3]; furthermore their native states often
have only marginal stability under normal physiological
conditions [23]. It is unsurprising then, the process of
protein folding and degradation needs to be well regulated
to maintain cellular integrity and health, correcting errors
that occur due to vulnerability conferred by the complexity
of the process.
This vulnerability results in cells being faced with a

continuous stream of misfolded and aggregated proteins,
which require supportive ‘molecular chaperones’ to refold,
degrade, and clear them to maintain proteome homeostasis
[51]. Both protein misfolding and failures in chaperone
demonstrate links between the pathogenesis of NDs.

Protein Misfolding
Cellular aging, disease-related gene mutations, or
proteotoxic stressors, like reactive oxygen species or
toxins, can cause proteins to change conformation
and become misfolded, escape cellular quality control
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and begin to aggregate as amorphous, oligomeric or
fibrillar formations [8, 10, 51]. These aggregates have
potential to overwhelm proteostasis, compromising
cell function. Neurons are particularly vulnerable to
damage by protein aggregation due to their polarisa-
tion and size, requiring unobstructed axonal transport
to complete their function [47]. In addition, due to
their post-mitotic nature, they are unable to dilute
the misfolded proteins, associated waste products and
subsequent toxicity, through cell division [10, 47].
Spires-Jones et al. [49] illustrates the pervasiveness of

misfolded proteins across the primary NDs. Despite this
apparent link across NDs, the common misfolded pro-
teins (e.g. α-Synuclein, Aβ, Huntington etc.) are mostly
distinct in terms of: biological function, location within
the nervous system and native structural appearance
[49]. However, in their pathogenic conformation many
of these proteins share a β-sheet-rich tertiary structure
that facilitates the formation of amorphous, oligomeric
or fibrillar formations [8, 10, 51, 53]. When in this β-
sheet-rich tertiary structure, there is some evidence
these proteins interact with each other, causing con-
formational changes into non-native states [49, 50, 53].
With respect to this interaction, there is growing atten-
tion given to the overlap of misfolded proteins and their
toxic effects on neurons across NDs.
Presence of α-synuclein in Lewy bodies throughout the

cortex is a primary feature of Dementia with Lewy Bodies
(DLB), however, α-synuclein has also been demonstrated
in the dopaminergic neurons in a subset of Parkinson's
disease (PD) patients and in the amygdala in c.60% of di-
agnosed Alzheimer’s disease (AD) patients [20, 49, 52].
Transactive response DNA binding protein 43 (TDP-43)
inclusions are hallmarks of certain Frontotemporal De-
mentias (FTLD) and Amyotrophic Lateral Sclerosis (ALS;
[41]) but have also now been demonstrated in DLB +AD,
PD with or without dementia, and in around one third of
mixed-dementia [37]. However, despite this cross-over,
data has shown that proteins, such as α-synuclein, can
lead to specific ND phenotypes (such as those of FLTD,
PD and ALS) without involvement of other misfolded
proteins [49]. Given the presence of cross-over between
proteins and studies demonstrating their interaction in
non-native conformation [19, 49], it is conceivable to
speculate they share a linked function in the pathogenesis
of NDs. However, our current understanding of multi-
morbidity within NDs is limited and the current literature
describes considerable heterogeneity between cases, mak-
ing it difficult to clarify their contributions and interac-
tions [49]. Additional large-scale quantitative analyses of
post-mortem tissue from ND patients alongside clinical
phenotypic data would aid clarification in the significance
of these protein cross-overs, interactions and their linked
contributions across NDs [12, 49].

The presence of misfolded proteins and their aggrega-
tion may be caused by heritable gene mutations in disease
proteins, for example, in Huntington’s disease (HD) and
in early onset AD and PD, and many ND cases demon-
strate stochastic genetic mutations [23]. However, in the
first study of its kind, a comparison of genome-wide gene
expression data of 93 brain tissue samples from patients
with AD, HD, Multiple Sclerosis, AML and PD demon-
strated that, despite significantly high number of dysregu-
lated genes in individual diseases, hardly any single
specific genes demonstrated commonality between the
NDs; those that did were primarily implicated in the
innate immune system and neuroinflammation [12].
Given this finding, it appears at the genomic level there is
not a single shared mechanism across NDs. It is however,
important to note there are significant methodological is-
sues with such a large comparative study and the methods
used to standardise for analysis may have yielded an
underrepresentation of shared genetic features [12].
Additionally, genome data in the absence of assessment of
protein expression and post-translational modifications
may be misleading and therefore proteomics should be
explored in future work in order to rule out a potential
shared pathogenic mechanism.
There has been further debate in the shared

contribution of different protein aggregate species and
their cytotoxic effects in NDs. Numerous studies have
posited that oligomers pose greater toxic threat than
fibrillary aggregates for amyloid proteins, including β-
amyloid and TDP-43 [19, 53], though this appears to
be inconsistent for aggregates of α-synuclein and
huntington, in which fibrils have been demonstrated
to be highly toxic [43, 56].
Overall, it appears that protein misfolding is a key

player in the pathogenesis of many NDs, though the
specific proteins implicated, their aggregates and the
genetic basis of their pathology do not appear to be
shared across all NDs. Further evidence is required to
clarify the co-existence of proteins and their interac-
tions in co-morbid NDs.

Chaperones
Chaperones bind to incipient proteins when they
leave the ribosome as random coils and support in
their folding into 3D-structures. In addition, they
quality check the proteins are correctly folded and
either redirect non-native species to their native state
or target them for (1) degradation through the ubi-
quitin proteasome system; (2) degradation via the au-
tophagy pathway; or (3) sequester them into transient
or stable deposits within cellular compartments when
degradation fails (see Fig. 1; [23, 51]). Functional and
genomic analyses have demonstrated two distinct
subsets of chaperones: Chaperones Linked to Protein
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Synthesis (CLIPS), which are supressed by stress, pri-
marily involved in protein folding and are transcrip-
tionally co-regulated with translational apparatus; and
Heat Shock Proteins (HSPs) that are stress induced
and are primarily involved in prevention of protein
aggregation [1].
Several studies have directly implicated human muta-

tions in Valosin-containing protein(VCP), Hsp70 and
Hsp40 chaperone genes in FTLD, PD and ALS [28, 54,
57]. Brehme et al. [8] found particular subsets of chaper-
ones, primarily CLIPS, exhibit repressed transcription
during ageing (the most significant and conserved risk
factor across NDs), and that this repression is greater in
brains of AD, HD and PD patients, further implicates a
link between chaperone expression and the risk for
and pathogenesis of multiple NDs. Brehme et al. [8]
further discovered, in knockdown models of C. ele-
gans, the genes for these chaperones were essential in
the prevention of proteotoxicity during normal ageing
and exacerbated phenotypes of induced AD and HD
via increased protein aggregation. In further support,
Eroglu et al. [15] demonstrated knockout of a well-
conserved chaperone (Hsp110) in mice led to accu-
mulation of hyperphosphorylated-tau and subsequent

neurodegeneration; furthermore, in mice overexpress-
ing APP, Hsp110 knockout led to appearance of
insoluble amyloid β42.
Wacker et al. demonstrated Hsp70 loss led to

significantly increased size of inclusion bodies formed
by mutant huntington (Htt) and had subsequent ex-
acerbation of the physical and behavioural biomarkers
of HD. Interestingly, deletion of the Hsp70 chaper-
ones affected inclusion bodies but, paradoxically, did
not impact the levels of fibrillary aggregates caused
by Htt. The authors suggest Hsp70s likely target in-
clusion bodies that are not on path to form fibrils
but nonetheless still pose deleterious effects on the
cell and contribute to cell death. Other evidence from
immunofluorescence studies supports this hypothesis,
suggesting that Hsp70s serve a role in sequestering
inclusion bodies, whilst a different chaperon, Hsp90,
serves a crucial role in prevention of fibril aggregation
[22]. These findings speak to the importance in pres-
ervation of different chaperones and how their select-
ive dysfunction leads to multiple pathologies in ND.
Multiple studies have demonstrated that chaperones

promote removal of pathogenic misfolded proteins
and their aggregate forms in many NDs [10]. McLear

Fig. 1 Quality Control of Misfolded Proteins. Green arrows denote chaperone pathways. When a misfolded protein occurs, it can be detected by
a molecular chaperone and refolded into a native protein. If this process cannot be completed, either because the native protein is unable to
undergo further conformational change or because it has formed an aggregate, it can be sequestered and degraded at a later stage. When
protein aggregates form in either an amorphous, fibrillary or oligomeric state, chaperone proteins can initiate two destruction responses. They
can target them for destruction via the Ubiquitin-proteasome pathways by facilitating ubiquitin tagging, or facilitate action via BAG3/p62 them
for autophagal degradation. ER = Endoplasmic Reticulum; E1 = ubiquitin–activating enzymes; E2 = ubiquitin–conjugating enzymes and E3 =
ubiquitin ligases. [Based on Reference Hartl [23] and Tofaris & Buckley [52]]
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et al. demonstrated that enhanced expression of
Hsp70 in established drosophila models of HD
dramatically improved survival and lifespan, though
did not demonstrate complete resolution of the HD
phenotype [36]. This supports earlier discussion of
the specific contribution to pathogenesis of Hsp70
mutations. Labbadia et al. [32] demonstrated similar
findings in mammals, showing that overexpression of
HSJ1a (a co-chaperone to Hsp70) significantly
reduced Htt-aggregates and subsequently improved
behavioural performance on a variety of activity and
motor assessments in R6/2 mouse models of HD.
McLean et al. used immunocytochemistry to demon-
strate that Hsp70 co-localised with 66% of lewy
bodies found in human cell culture of PD and AD
patients; furthermore they demonstrated that over-ex-
pression of Hsp chaperones prevented α-synuclein ag-
gregation in a human-cell model [35]. Evans et al.
added to this work, demonstrating that recombinant
Hsp70/40 and Hsp90 block Aβ self-assembly in in
vitro human-cell culture. Consistent with evidence in
other ND models [22, 35, 56], they found that these
chaperones supressed early stages of self-assembly, al-
tered pre-formed oligomers but had little effect on fi-
brils. Evidence in familial-ALS transgenic mice models
failed to show any benefit of upregulated Hsp70 [33],
however, overexpression of HSJ1a did demonstrate signifi-
cant improvement in muscle force, increased motor unit
number and enhanced motor neuron survival as well as
reduced SOD1 aggregation [42].
Overall, these data, alongside the studies of chaperone

failures, demonstrate a convincing link between NDs
through the contribution of chaperones to pathogenesis
and as a shared potential treatment target. However,
they also demonstrate ‘not one size fit all’ phenomena,
as they implicate differing contributions of these mo-
lecular units to different ND types, such as the greater
impact of HSJ1a in the motor NDs discussed compared
to Hsp70 in AD.

Protein Propogation
The focus of this section will be on the favoured, emer-
ging hypothesis for protein propagation; which is the
proposition of a non-cell-autonomous process, in which
non-native protein species propagate in a prion-like
manner from a ‘donor cell’ to an ‘acceptor cell’ and pro-
liferate by recruiting native proteins and transforming
them into proteotoxic conformers [29, 51, 53, 55]. There
is significant debate whether the proteins in NDs are
true prions, as in Prusiner’s original paper [45], and to
what extent they share common features [53]. Despite
the discussed differences in prevalence, initial structure,
function and location of the proteins implicated in NDs,
it could be considered they utilise common pathways for

their propagation in a prion-like way by misfolding na-
tive proteins. However, unlike true prions, ND proteins
are not strictly speaking ‘infectious’, in that they are
unable to exit the body, travel to another organism and
resume replication under natural conditions [29, 53]. In
two large studies, no infective transmission between
humans of AD and PD occurred in cadaver-derived
human growth hormone (HGH) recipients [25] or blood
transfusion recipients [4] and to date there are no
reports of induced-ND following organ transplant, as
would be expected in typical prion diseases, such as
Creutzfeldt-Jakob disease [4, 50]. However, one study
did report that half of the eight cases examined demon-
strated potential transmission of Aβ-plaques via pituit-
ary-HGH transplant in patients demonstrating AD
pathology post-mortem, with low risk factors of disease
development [26]. Further epidemiological data of
patients receiving biomaterial from ND-patients would
help clarify these inconsistent findings and the true
infectious nature of ND protein aggregates.
Notwithstanding, many studies demonstrate support of a

prion-like model of spread within NDs [19, 29, 50, 53, 55].
The earliest evidence from Goudsmit et al. [18] failed
to support the model; non-human primates were
inoculated intracerebrally with brain tissue from 52
patients with AD, following which they developed an
encephalopathy consistent with CJD but failed to
reproduce AD. However, it is important to note the
incubation time prior to examination was brief in
respect to AD progression. In a similar study, three
non-human primates were intracerebrally inoculated
and sacrificed 6–7 years after. Histology of their brain
tissue was compared with colony aged-matched con-
trols and revealed significant presence of Aβ-plaques
consistent with AD pathology but no neurofibrillary
tangles. Subsequent work with transgenic mice
supported this finding. β-amyloid-containing brain
extracts from two strains of aged transgenic AD mice
models were transplanted into the hippocampus of
young mice. Following transplantation, the young
mice developed AD pathology consistent in terms of
morphological, conformational, and Aβ40:Aβ42 ratio
characteristics with the strain transplanted [24], which
is consistent with other evidence of amyloid-β acting
in a prion-like manner [13, 14, 50].
Tau fibrils have demonstrated the ability to enter

‘acceptor cells’ and cause fibrillisation of native-tau in
cell culture studies [50, 58]. When brain extracts
from humans that died from tauopathies are injected
into the hippocampus of mice transgenic for wild-type
human tau, argyrophilic tau inclusions form and re-
capitulate the ND phenotypes [11]. Kaufman et al.
was able to use two transgenic tau strains to cause
strain-specific pathology in distinct cell types and
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brain regions as well as provoke strain-specific rates
of network propagation [30].
Two case studies demonstrated that pathological

changes, including Lewy body–like structures that
stained for α-synuclein, can develop in human foetal
neurons grafted into a host with PD disease [31],
demonstrating prion-like transmission from host to
graft. Later animal work supported this finding, demon-
strating in vivo transfer and interaction of α-synuclein
between host cells and grafted dopaminergic neurons in
mice overexpressing human α-synuclein [21]. Further
evidence demonstrated injected α-synuclein fibrils re-
cruit host-cell α-synuclein into pathological aggregates
that spread transneuronally over 1–12months after
injection [46].
Drosophila models of HD have demonstrated inter-

neuronal spreading of Htt aggregation in a prion-like
manner [2]. Cicchetti et al. [9] described the pres-
ence of Htt derived oligomers within grafted striatal
tissue in three HD patients from c.10 years prior,
whom later died secondary to the progression of HD.
Further studies in both culture and in vivo animal
work have demonstrated prion-like propagation of
Htt [27, 50].
ALS and FLTD-related proteins, including SOD1

and TDP-43, have been shown both in stem-cell cul-
ture and animal studies to follow self-perpetuating
seeded aggregation, consistent with prion-like trans-
mission [34, 50, 59].
These data outline evidence of prion-like propagation

in several major NDs, however, it is still not clear quite
how prion’s escape the macropinosome and transmit
between cells [50]. Converging evidence does support
hypotheses of utilisation of lysosome and tunnelling
nanotubules [53], though the mechanisms by which
tunnelling nanotubules are formed and how protein ag-
gregates recruit them is still unclear [53]. In addition,
mechanisms including membrane disruption, release
via exosomes, secretion of soluble material, and cell
death have also been proposed though the evidence is
inconsistent and requires further study [50, 59].
If the prion hypothesis were to hold true, therapeutic

attempts to enhance extracellular clearance of mis-
folded proteins, inhibition cellular uptake and intracel-
lular aggregate seeding, and disrupt aggregate release
into extracellular space would be effective approaches
[50]. However, to date such attempts have been incon-
sistent. Immunotherapeutic approaches promoting
extracellular clearance of misfolded proteins in AD and
synucleinopathies have had some moderate success in
animal models [5, 60] and there are now several clinical
trials in AD and PD [50]. However, success has been in-
consistent with multiple phase III clinical trials failing
[17, 60, 61]. One potential reason for this translational

failure, however, is that the animal model studies had a
priori knowledge of disease presence and consequently
were able to intervene earlier in disease progression
than possible in the clinical trials, were there was a
minimum of presence of modest cognitive impairment.
Later phase III trials, have done well in improving on
this and are now recruiting at-risk and asymptomatic pa-
tients, more consistent with the animal study protocols
[38–40]. Treatments targeting protein aggregation also
have demonstrated poor clinical efficacy in clinical trials
[16], though again these targeted mild-to-moderate dis-
ease states and may be administered too late to have
therapeutic impact.
Overall, despite significant and promising evidence

across NDs for protein propagation in a prion-like
manner, until we can better characterise the intracellu-
lar protein transmission mechanisms and demonstrate
that specific interventions are able to block this prion-
like behaviour, a prion model of ND propagation
cannot be confirmed.

Concluding remarks
It is clear that NDs are not entirely distinct diseases and
they share many common themes, including protein mis-
folding, failures in proteostasis, and potentially propaga-
tion pathways (though this is yet to be confirmed).
However, despite these overarching, similar features, the
molecular components implicated, such as the specific
proteins and molecular chaperones involved, and the risk
factors that are associated with those components, do not
appear to be shared across all NDs and speak to the
pathological specificity of the molecular mechanisms be-
hind different NDs.
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